Abstract
A considerable amount of work has been dedicated in the past to the problem of the system identification of helicopter flight dynamics, while much less activity has been oriented to the goal of developing suitable identification procedures for rotor dynamics, mainly because of the difficulties associated with the task. This paper shows that subspace and optimization based identification techniques can be used to determine discrete-time linear parameter-varying models that have the potential to provide accurate descriptions for the (intrinsically time-varying) dynamics of a rotor blade. The identification techniques are presented and applied to simulated data generated by a physical model that describes the out-of-plane bending dynamics of a helicopter rotor blade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.