Abstract

This paper considers the problem of identifiability and parameter estimation of single-input–single-output, linear, time-invariant, stable, continuous-time systems under irregular and random sampling schemes. Conditions for system identifiability are established under inputs of exponential polynomial types and a tight bound on sampling density. Identification algorithms of Gauss–Newton iterative types are developed to generate convergent estimates. When the sampled output is corrupted by observation noises, input design, sampling times, and convergent algorithms are intertwined. Persistent excitation (PE) conditions for strongly convergent algorithms are derived. Unlike the traditional identification, the PE conditions under irregular and random sampling involve both sampling times and input values. Under the given PE conditions, iterative and recursive algorithms are developed to estimate the original continuous-time system parameters. The corresponding convergence results are obtained. Several simulation examples are provided to verify the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.