Abstract

Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, nonselective cation channel with a widespread distribution throughout the body. It is involved in many pathological and physiological processes, making it a potential therapeutic target for various diseases, including Alzheimer's disease, Parkinson's disease, and cancers. New analytical techniques are beneficial for gaining a deeper understanding of its involvement in disease pathogenesis and for advancing the drug discovery for TRPM2-related diseases. In this work, we present the application of collision-induced affinity selection mass spectrometry (CIAS-MS) for the direct identification of ligands binding to TRPM2. CIAS-MS circumvents the need for high mass detection typically associated with mass spectrometry of large membrane proteins. Instead, it focuses on the detection of small molecules dissociated from the ligand-protein-detergent complexes. This affinity selection approach consolidates all affinity selection steps within the mass spectrometer, resulting in a streamlined process. We showed the direct identification of a known TRPM2 ligand dissociated from the protein-ligand complex. We demonstrated that CIAS-MS can identify binding ligands from complex mixtures of compounds and screened a compound library against TRPM2. We investigated the impact of voltage increments and ligand concentrations on the dissociation behavior of the binding ligand, revealing a dose-dependent relationship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.