Abstract

Identification of ligand-binding pockets in proteins is pivotal to protein function definition and drug discovery. In this study, we focus on determining the binding pockets in proteins for potential ligands without any a priori knowledge. Three methods based upon residue preference concept are proposed to predict ligand-binding pockets, where we deal with three types of residue preference (residue based, atom based and atom-contact-pair based preference), respectively. Two test sets were chosen to examine the proposed methods. Two different identification rules (named Top1 and Top2) are used to detect ligand-binding pockets. The results show that the atom-contact-pair method has good accuracy and high efficiency, better than the other two methods. By means of preference analysis for amino acids and atom-contact-pairs, we find that Gly and atom-contact-pairs on aromatic residues appear at ligand-binding pockets more frequently. The former favors pocket flexibility, and the latter shows that aggregate hydrophobic surface may play an important role in complex formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call