Abstract

Wheat leaf rust, caused by Puccinia triticina (Pt), is a widespread disease of bread wheat worldwide. In the present study, 50 wheat cultivars from Ethiopia and 34 differential lines, mostly near-isogenic lines (NILs) in the background of Thatcher with known resistance genes to leaf rust (Lr), were tested with 14 Pt races in the greenhouse to postulate Lr genes at the seedling stage. Field experiments were also conducted to identify adult plant responses to leaf rust in Baoding in the 2017-2018 and 2018-2019 growing seasons and in Zhoukou in the 2018-2019 growing season. Thirteen Lr genes (Lr1, Lr18, Lr3ka, Lr15, Lr26, Lr20, Lr14a, Lr30, Lr2a, Lr11, Lr34, Lr46, and Lr68) either singly or in combination were found in 39 cultivars. Known Lr genes were not present in the remaining 11 cultivars. Lr1 and Lr46, each in 13 cultivars, and Lr34 in 12 cultivars were the most commonly identified resistance genes. Less frequently identified genes included Lr26 (five cultivars); Lr30 and Lr18 (each present in four cultivars); Lr15, Lr3ka, and Lr2a (each identified in three cultivars); and Lr68 (two cultivars). Evidence for the existence of Lr11, Lr20, and Lr14a (each in one cultivar) was also obtained. Twenty-one cultivars were found to have slow rusting resistance to leaf rust in the field tests. The results should be valuable for cultivar selection with combinations of effective Lr genes and used in breeding new cultivars with improved resistance to leaf rust in Ethiopia and China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call