Abstract

BackgroundLate assembly (L)-domains are protein interaction motifs, whose dysfunction causes characteristic budding defects in enveloped viruses. Three different amino acid motifs, namely PT/SAP, PPXY and YPXnL have been shown to play a major role in the release of exogenous retroviruses. Although the L-domains of exogenous retroviruses have been studied comprehensively, little is known about these motifs in endogenous human retroviruses.ResultsUsing a molecular clone of the human endogenous retrovirus K113 that had been engineered to reverse the presumed non-synonymous postinsertional mutations in the major genes, we identified three functional L-domains of the virus, all located in the Gag p15 protein. A consensus PTAP tetrapeptide serves as the core of a main L-domain for the virus and its inactivation reduces virus release in HEK 293T cells by over 80%. Electron microscopy of cells expressing the PTAP mutant revealed predominantly late budding structures and budding chains at the plasma membrane. The fact that this motif determines subcellular colocalization with Tsg101, an ESCRT-I complex protein known to bind to the core tetrapeptide, supports its role as an L-domain. Moreover, two YPXnL motifs providing additional L-domain function were identified in the p15 protein. One is adjacent to the PTAP sequence and the other is in the p15 N-terminus. Mutations in either motif diminishes virus release and induces an L-domain phenotype while inactivation of all three L-domains results in a complete loss of particle release in HEK 293T cells. The flexibility of the virus in the use of L-domains for gaining access to the ESCRT machinery is demonstrated by overexpression of Tsg101 which rescues the release of the YPXnL mutants. Similarly, overexpression of Alix not only enhances release of the PTAP mutant by a factor of four but also the release of a triple mutant, indicating that additional cryptic YPXnL domains with a low affinity for Alix may be present. No L-domain activity is provided by the proline-rich peptides at the Gag C-terminus.ConclusionsOur data demonstrate that HERV-K(HML-2) release is predominantly mediated through a consensus PTAP motif and two auxiliary YPXnL motifs in the p15 protein of the Gag precursor.

Highlights

  • Late assembly (L)-domains are protein interaction motifs, whose dysfunction causes characteristic budding defects in enveloped viruses

  • Generation and expression of a molecular clone of HERVK113 in which non-synonymous postinsertional mutations are reverted By alignment with ten other well-preserved humanspecific human endogenous retrovirus (HERV)-K(HML-2) elements, we recently identified putative non-synonymous postinsertional mutations in the env, rec and gag-pro-pol open reading frames of the HERV-K113 element described by Turner and coworkers [30] and successfully expressed the reconstituted proteins [17,28]

  • Transfection of the pBSKoriHERV-K113 plasmid into HEK 293T cells resulted in the production and release of virus like particles as demonstrated by reverse transcriptase activity in the supernatant (Figure 1A) and thin-section electron microscopy of the producing cells (Figure 1B)

Read more

Summary

Introduction

Late assembly (L)-domains are protein interaction motifs, whose dysfunction causes characteristic budding defects in enveloped viruses. Three different amino acid motifs, namely PT/SAP, PPXY and YPXnL have been shown to play a major role in the release of exogenous retroviruses. A functional PT/SAP class of L-domains can be as large as 12 amino acids. L-domains function by directly or indirectly linking the Gag precursor proteins to the cellular ESCRT machinery principally involved in the endosomal sorting of cargo proteins and the biogenesis of multivesicular bodies. This machinery consists of about 25 cellular proteins that form four major complexes termed ESCRT-0, -I, -II and -III [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.