Abstract
We recently found that polyclonal antibodies to laminin, a basement membrane-related glycoprotein, inhibited murine lung morphogenesis when added to organ cultures of mouse embryonic lung. Using a series of monoclonal antilaminin antibodies with previously characterized subunit specificity (termed AL-1, AL-2, AL-3, AL-4, and AL-5), the deposition and functional involvement of different laminin domains in the developing lung were investigated. By immunohistochemistry the antibodies' reactivity was largely localized to the basement membrane, but was also present diffusely in the extracellular matrix throughout the mesenchyme. Organ cultures of lung explants from Day 12 embryos were cultured for 3 days in the presence of 50–100 μg/ml of each antibody or in the presence of the same concentration of immunoglobulins G and M, laminin-neutralized antibody, or medium alone. Cultures were monitored by phase-contrast microscopy, light microscopy, and immunofluorescence. Although all antibodies penetrated the tissues in culture, only two of them inhibited branching activity. These two antibodies were AL-1, which binds on or near the cross region of laminin, and AL-5, which binds to the lateral short arms at the globular end regions of the B chain of laminin. Inhibition of branching with these two antibodies was dose-dependent and statistically significant for the two concentrations used. AL-2, AL-3, AL-4, laminin-neutralized antibodies and control immunoglobulins did not alter lung morphogenesis. The two domains of laminin that promote lung branching morphogenesis have been reported by others to promote the attachment of a variety of cells and/or bind heparin. These domains of laminin may promote branching morphogenesis by facilitating cell attachment and, consequently, cell proliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.