Abstract
Although indirect evidence suggests that the control of sympathetic preganglionic neurons is mediated to a great extent through interneurons, little is known about the location, morphology or neurotransmitter phenotype of such interneurons. This limitation seriously impedes our understanding of spinal synaptic circuits crucial to control of arterial pressure and other visceral functions. We used a highly neurotropic, minimally cytopathic recombinant herpes simplex virus type-1 to study spinal “sympathetic” interneurons labelled by trans-synaptic transport of the virus from the adrenal gland in rats. Approximately 120–320 infected neurons/rat were identified by immunocytochemical detection of the viral antigen. We distinguished between virus-infected preganglionic neurons and infected interneurons by (i) their location within the spinal laminae, (ii) their size and shape and (iii) the presence or absence of immunoreactivity for the acetylcholine-synthesizing enzyme, choline acetyltransferase, a marker of sympathetic preganglionic neurons. Virus-labelled sympathetic preganglionic neurons were found within the known spinal preganglionic nuclei. Non-cholinergic, virus-labelled neurons were located throughout lamina VII and in the ventral portion of lamina V. These putative interneurons were found in the major spinal preganglionic nuclei, usually intermingled with the preganglionic neurons. Sometimes, they were located in clusters separate from the preganglionic neurons. The interneurons were approximately 15 μm in diameter, smaller than the average preganglionic neuron (diameter=25 μm), and had a few fine processes emanating from them. These non-cholinergic interneurons constituted approximately one-half of the population of virus-infected neurons. In summary, with the use of a recombinant herpes simplex virus, we identified a large number of non-cholinergic interneurons close to, or intermingled with, adrenal sympathetic preganglionic neurons. The neurotransmitter phenotype of these neurons remains to be determined but they likely integrate much of the supraspinal and primary afferent inputs to spinal preganglionic neurons that control arterial pressure and other visceral functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.