Abstract

Deep learning is an advanced machine-learning approach that is used in several medical fields. Here, we developed a deep learning model using an object detection algorithm to identify the L5 vertebra on anteroposterior lumbar spine radiographs, and assessed its detection accuracy. We retrospectively recruited 150 participants for whom both anteroposterior whole-spine and lumbar spine radiographs were available. The anteroposterior lumbar spine radiographs of these patients were used as the input data. Of the 150 images, 105 (70%) were randomly selected as the training set, and the remaining 45 (30%) were assigned to the validation set. YOLOv5x, of the YOLOv5 family model, was used to detect the L5 vertebra area. The mean average precisions 0.5 and 0.75 of the trained L5 detection model were 99.2% and 96.9%, respectively. The model's precision was 95.7% and its recall was 97.8%. Furthermore, 93.3% of the validation data were correctly detected. Our deep learning model showed an outstanding ability to identify L5 vertebrae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.