Abstract

This study proposes an algorithm to identify stable Kuroshio meanderings by extracting topological features from a sea surface height (SSH) gridded dataset in 1993–2020. Based on the mathematical theory of topological classifications for streamline patterns, the algorithm provides a unique symbolic representation and a discrete graph structure, which is referred to as the partially cyclically ordered rooted tree (COT) representation and the Reeb graph, respectively, to structurally stable Hamiltonian vector fields. We have confirmed that the temporal variations in the Kuroshio southernmost position south of the Tokai district captured by the algorithm are well consistent with the existing results by the Japan Meteorological Agency (JMA). The algorithm based on the topology detects five meandering periods: The three of them correspond to large meandering events detected by the JMA, while the two of them are offshore non-large meandering events. The topological data analysis reveals that a large cyclonic eddy inside of the meandering is split into two small eddies near the termination of the most meandering events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.