Abstract

Kinetin (free base and riboside), which was assumed by many scientists to be a synthetic cytokinin plant growth hormone, has been detected for the first time in the endosperm liquid of fresh young coconut fruits ("coconut water"). To facilitate the study, we developed a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the identification and quantification of kinetin and kinetin riboside in purified coconut water extract sample. Following a solid-phase extraction of cytokinins in coconut water using C18 columns, the samples were further purified by Oasis MCX columns and analyzed by LC-MS/MS for kinetin and kinetin riboside. Detection by mass spectrometry was carried out using selected reaction monitoring (SRM) mode, by identifying the putative kinetin and kinetin riboside based on their characteristic fragments. Based on a signal-to-noise ratio of 3, the limits of detection in SRM mode were 0.02 microM and 0.005 microM for kinetin and kinetin riboside, respectively. Furthermore, optimal conditions for a baseline chromatographic separation of 18 cytokinin standards by high performance liquid chromatography (HPLC) were developed. The HPLC method had been employed for the confirmation and further fractionation of kinetin in coconut water extracts. The confirmation and fractionation of kinetin riboside was carried out using a further modified HPLC program due to the presence of other interfering material(s) in the sample matrix. Finally, fractions of putative kinetin and kinetin riboside collected from HPLC eluate of coconut water sample were further authenticated by independent capillary zone electrophoresis (CZE) experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.