Abstract

Introduction:The mechanistic basis for the development of esophageal squamous cell carcinoma (ESCC) remains poorly understood. The goal of the present study was thus to characterize mRNA and long noncoding RNA (lncRNA) expression profiles associated with ESCC in order to identify key hub genes associated with the pathogenesis of this cancer.Materials and Methods:The GSE26866 and GSE45670 datasets from the Gene Expression Omnibus (GEO) database were used to conduct a weighted gene co-expression network analysis (WGCNA), after which Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. Cytoscape was additionally used to construct lncRNA-mRNA networks, after which hub genes were identified and validated through the assessment of TCGA datasets and clinical samples.Results:Two gene modules were found to be closely linked to ESCC tumorigenesis. These genes were enriched in cell cycle, MAPK signaling, JAK-STAT signaling, pyrimidine metabolism, arachidonic acid metabolism, and P53 signaling pathway activity, all of which are directly linked with the development of cancer. In total, we identified and validated 9 hub genes associated with ESCC (DDX18, DNMT1, NCAPG, WDHD1, PRR11, VOPP1, ZKSCAN5, LC35C2, and PHACTR2).Conclusion:In summary, we identified key gene modules and hub genes associated with ESCC development, and we constructed a lncRNA-mRNA network pertaining to this cancer type. These results provide a foundation for future research regarding the mechanistic basis of ESCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call