Abstract

The molecular mechanism of the Ca2+-mediated formation of competent cells in Escherichia coli remains unclear. In this study, transcriptome and proteomics techniques were used to screen genes in response to Ca2+ treatment. A total of 333 differentially expressed genes (317 upregulated and 16 downregulated) and 145 differentially expressed proteins (54 upregulated and 91 downregulated) were obtained. These genes and proteins are mainly enriched in cell membrane components, transmembrane transport, and stress response-related functional terms. Fifteen genes with these functions, including yiaW, ygiZ, and osmB, are speculated to play a key role in the cellular response to Ca2+. Three single-gene deletion strains were constructed with the Red homologous recombination method to verify its function in genetic transformation. The transformation efficiencies of yiaW, ygiZ, and osmB deletion strains for different-size plasmids were significantly increased. None of the three gene deletion strains changed in size, which is one of the main elements of microscopic morphology, but they exhibited different membrane permeabilities and transformation efficiencies. This study demonstrates that Ca2+-mediated competence formation in E. coli is not a simple physicochemical process and may involve the regulation of genes in response to Ca2+. This study lays the foundation for further in-depth analyses of the molecular mechanism of Ca2+-mediated transformation. IMPORTANCE Using transcriptome and proteome techniques and association analysis, we identified several key genes involved in the formation of Ca2+-mediated E. coli DH5α competent cells. We used Red homologous recombination technology to construct three single-gene deletion strains and found that the transformation efficiencies of yiaW, ygiZ, and osmB deletion strains for different-size plasmids were significantly increased. These results proved that the genetic transformation process is not only a physicochemical process but also a reaction process involving multiple genes. These results suggest ways to improve the horizontal gene transfer mechanism of foodborne microorganisms and provide new ideas for ensuring the safety of food preservation and processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.