Abstract

An evaluation of airborne dust in nursery pig houses is needed because the air quality within the buildings can deteriorate, compromising the respiratory health of both pigs and farmers. Creating acceptable aero-environmental conditions inside a livestock house requires an understanding of the mechanisms of dust generation, which involves a complicated combination of variables. A long-term, intensive dust monitoring study was carried out in a mechanically ventilated nursery pig house to determine the key factors affecting dust generation in different size fractions. The ventilation rate, indoor and outdoor air temperature, number and age of animals, and relative pig activity level were used as independent variables in multiple regression analyses. From our observations and statistical analyses, ventilation was the most influential factor of total suspended particulates and PM10. Vigorous activity among the animals, number of animals, and ventilation were significant factors in the generation of inhalable dust, and ventilation, indoor air temperature, and animal activity were significant factors in the generation of respirable dust. The statistical models identified adjusting the ventilation rate and improving the systematic characteristics of ventilation as effective components of a dust reduction strategy in terms of productivity and economic feasibility. Computational fluid dynamics was used to evaluate the dust reduction efficiency of pipe-exhaust systems during feed supply. According to the simulations, the application of a pipe-exhaust system would improve the indoor air quality of the experimental pig nursery house.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call