Abstract
Direct analysis of chemical components in fresh cigarette smoke in real time is a challenging task. In this work, by using a novel continuous cigarette-pushing and smoke-introducing setup combined with synchrotron radiation photoionization mass spectrometry (SR-PIMS), the photoionization mass spectra of fresh gaseous cigarette sidestream smoke (SSS) from the combustion of solid tobacco could be recorded in real time, and the photoionization efficiency (PIE) curves of each mass peak could be obtained for the first time. Hence, lots of well-known chemical components and even isomers could be identified by their discriminated onsets or PIE curve simulation. Moreover, diimine, 2H-azirine, and sulfur monoxide, which have never been reported in cigarette smoke, were observed in cigarette SSS, and even two intermediates, ethenol and propen-2-ol, anticipated to exist were actually observed and distinguished. To increase the qualification accuracy, a new simulation method based on multiple linear regression (MLR) was developed and applied for the PIE curve simulation, where qualification mistakes caused by subjective judgements could be eliminated as far as possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.