Abstract

Iron metabolism is considered to play the principal role in sepsis, but the key iron metabolism-related genetic signatures are unclear. In this study, we analyzed and identified the genetic signatures related to the iron-metabolism in sepsis by using a bioinformatics analysis of four transcriptomic datasets from the GEO database. A total of 21 differentially expressed iron metabolism-related signatures were identified including 9 transporters, 8 enzymes, and 4 regulatory factors. Among them, lipocalin 2 was found to have the highest diagnostic value as its expression showed significant differences in all the comparisons including sepsis vs healthy controls, sepsis vs non-sepsis diseases, and mild forms vs severe forms of sepsis. Besides, the cytochrome P450 gene CYP1B1 also showed diagnostic values for sepsis from the non-sepsis diseases. The CYP4V2, LTF, and GCLM showed diagnostic values for distinguishing the severe forms from mild forms of sepsis. Our analysis identified 21 sepsis-associated iron metabolism-related genetic signatures, which may represent diagnostic and therapeutic biomarkers of sepsis, and will improve our understanding of the molecular mechanism underlying the occurrence of sepsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call