Abstract

1. Intrafusal muscle fibres of cat tenuissimus spindles have been injected with the fluorescent dye Procion Yellow and identified histologically after recording their changes in membrane potential during 1/sec stimulation of single static or dynamic gamma axons. 2. Thirteen intrafusal muscle fibres innervated by static gamma axons were identified as eight bag2 and five chain fibres. The fact that none proved to be a bag1 fibre is not regarded as significant, for reasons given in the Discussion. 3. In one spindle Procion Yellow was injected into two intrafusal muscle fibres activated by the same static gamma axon; they were identified as a bag2 and a chain fibre. 4. Nine intrafusal muscle fibres innervated by dynamic gamma axons were identified as seven bag1 fibres, one bag2 fibre, and one long chain fibre. 5. In one spindle two bag fibres were injected, one activated by a dynamic gamma axon, the other by a static gamma axon; the former proved to be a bag1 fibre, the latter a bag2 fibre. 6. Stimulation of static gamma axons elicited junctional potentials in seven bag2 fibres and one damaged chain fibre, and action potentials in one bag2 and four chain fibres. In the whole sample of impaled intrafusal muscle fibres (identified and unidentified) activated by static axons, junctional potentials were recorded from twenty-three (62.2%), and action potentials from fourteen (37.8%). Stimulation of dynamic gamma axons always elicited junctional potentials. 7. In a number of instances it was possible to examine the ultrastructure of motor endings belonging to the stimulated gamma axon. The myoneural junctions of trail endings supplied by static gamma axons to bag2 and chain fibres were both smooth and folded; the deepest and most regular folding occurred on chain fibres. The terminals of p2 plates supplied to bag1 fibres by dynamic gamma axons had smooth myoneural junctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call