Abstract

Upon sensing pathogen-associated patterns and secreting interferons (IFNs) into the environment, host cells perceive extracellular type I IFNs by the IFNα/β receptors IFNAR1 and IFNAR2 to stimulate downstream innate immune signaling cascades. Through the use of chemical probes, we demonstrated that IFNAR2 facilitates hepatitis C virus (HCV) entry. Silencing of IFNAR2 significantly attenuated HCV proliferation. IFNAR2 binds infectious HCV virions through a direct interaction of its D2 domain with the C-terminal end of apolipoprotein E (apoE) on the viral envelope and facilitates virus entry into host cells. The antibody against the IFNAR2 D2 domain attenuates IFNAR2-apoE interaction and impairs HCV infection. The recombinant IFNAR2 protein and the chemical probe potently inhibit major HCV genotypes in various human liver cells in vitro. Moreover, the impact of a chemical probe on HCV genotype 2a is also documented in immune-compromised humanized transgenic mice. Our results not only expand the understanding of the biology of HCV entry and the virus-host relationship but also reveal a new target for the development of anti-HCV entry inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call