Abstract

Vertebrates have developed multiple mechanisms to coordinate the replication of epigenetic and genetic information. Dnmt1 encodes the maintenance enzyme DNA-methyltransferase, which is responsible for propagating the DNA methylation pattern and the epigenetic information that it encodes during replication. Direct sequence analysis and bisulfite mapping of the 5' region of DNA-methyltransferase 1 (dnmt1) have indicated the presence of many sequence elements associated with previously characterized origins of DNA replication. This study tests the hypothesis that the dnmt1 region containing these elements is an origin of replication in human cells. First, we demonstrate that a vector containing this dnmt1 sequence is able to support autonomous replication when transfected into HeLa cells. Second, using a gel retardation assay, we show that it contains a site for binding of origin-rich sequences binding activity, a recently purified replication protein. Finally, using competitive polymerase chain reaction, we show that replication initiates in this region in vivo. Based on these lines of evidence, we propose that initiation sites for DNA replication are located between the first intron and exon 7 of the human dnmt1 locus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.