Abstract

Efficient identification of influential nodes is one of the essential aspects in the field of complex networks, which has excellent theoretical and practical significance in the real world. A valuable number of approaches have been developed and deployed in these areas where just a few have used centrality measures along with their concerning deficiencies and limitations in their studies. Therefore, to resolve these challenging issues, we propose a novel effective distance-based centrality (EDBC) algorithm for the identification of influential nodes in concerning networks. EDBC algorithm comprises factors such as the power of K-shell, degree nodes, effective distance, and numerous levels of neighbor’s influence or neighborhood potential. The performance of the proposed algorithm is evaluated on nine real-world networks, where a susceptible infected recovered (SIR) epidemic model is employed to examine the spreading dynamics of each node. Simulation results demonstrate that the proposed algorithm outperforms the existing techniques such as eigenvector, betweenness, closeness centralities, hyperlink-induced topic search, H-index, K-shell, page rank, profit leader, and gravity over a valuable margin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.