Abstract
We study the influence of a single data case on the results of a statistical analysis. This problem has been addressed in several articles for linear discriminant analysis (LDA). Kernel Fisher discriminant analysis (KFDA) is a kernel based extension of LDA. In this article, we study the effect of atypical data points on KFDA and develop criteria for identification of cases having a detrimental effect on the classification performance of the KFDA classifier. We find that the criteria are successful in identifying cases whose omission from the training data prior to obtaining the KFDA classifier results in reduced error rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.