Abstract
AbstractIn Japan, bridge inspections are compulsorily performed in 5‐year cycles. With the institutionalization of the inspection cycle, essential data have been continuously accumulated. However, effective data utilization requires trend analysis and causal analysis for a group of bridges. In this study, a method for determining factors affecting deterioration is established. The analysis is performed for concrete and steel bridges with Bayesian networks by utilizing data on bridge inspection and repair, and open data such as traffic census and rainfall. For concrete and steel bridges, the target members are the deck slab and main structural members, whereas the damage type is “Delamination/rebar exposure” and “corrosion,” respectively. The validity of the selected explanatory variables is verified by crossvalidation using separately prepared test data; evidently, the maximum damage rating prediction accuracy is 86%. Furthermore, the influencing factors extracted in this study are reasonable for the two damages, thus indicating the possibility of probabilistically extracting influencing factors for specific damages by Bayesian networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.