Abstract

We have recently reported that transfer of the domain IIS6 region from rapidly inactivating R-type (alpha(1E)) calcium channels to slowly inactivating L-type (alpha(1C)) calcium channel confers rapid inactivation (Stotz, S. C., Hamid, J., Spaetgens, R. L., Jarvis, S. E., and Zamponi, G. W. (2000) J. Biol. Chem. 275, 24575-24582). Here we have identified individual amino acid residues in the IIS6 regions that are responsible for these effects. In this region, alpha(1C) and alpha(1E) channels differ in seven residues, and exchanging five of those residues individually or in combination did not significantly affect inactivation kinetics. By contrast, replacement of residues Phe-823 or Ile-829 of alpha(1C) with the corresponding alpha(1E) residues significantly accelerated inactivation rates and, when substituted concomitantly, approached the rapid inactivation kinetics of R-type channels. A systematic substitution of these residues with a series of other amino acids revealed that decreasing side chain size at position 823 accelerates inactivation, whereas a dependence of the inactivation kinetics on the degree of hydrophobicity could be observed at position 829. Although these point mutations facilitated rapid entry into the inactivated state of the channel, they had little to no effect on the rate of recovery from inactivation. This suggests that the development of and recovery from inactivation are governed by separate structural determinants. Finally, the effects of mutations that accelerated alpha(1C) inactivation could still be antagonized following coexpression of the rat beta(2a) subunit or by domain I-II linker substitutions that produce ultra slow inactivation of wild type channels, indicating that the inactivation kinetics seen with the mutants remain subject to regulation by the domain I-II linker. Overall, our results provide novel insights into a complex process underlying calcium channel inactivation.

Highlights

Read more

Summary

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.