Abstract

The 17beta-hydroxysteroid dehydrogenase type 1 (HSD17B) family has been implicated in the prognosis and treatment prediction of various malignancies; however, its association with bladder cancer (BLCA) remains unclear. This study aimed to evaluate the potential of HSD17B1, as a prognostic biomarker, for the survival of patients with BLCA and to determine its effectiveness as a supplemental biomarker for BLCA. A series of bioinformatics techniques were applied to investigate the expression of HSD17B1 in different types of cancer and its potential association with the prognosis of BLCA patients using diverse databases. The UALCAN, Human Protein Atlas, cBioPortal, Metascape, GEPIA, MethSurv, and TIMER were employed to analyze expression differences, mutation status, enrichment analysis, overall survival, methylation, and immune-infiltrating cells. The real-time reverse transcription-PCR (qRT-PCR) was implemented to detect the messenger ribonucleic acid (mRNA) expression levels of HSD17B1 in vitro. Elevated mRNA and protein levels of HSD17B1, surpassing normal levels, were observed in BLCA samples. In addition, the BLCA patients with higher mRNA expression level of HSD17B1 significantly reduced the overall survival. Also, several immune infiltrating cells, including mast cell resting CIBERSORT-ABS, have been identified as tumor-associated biomarker genes, with the potential to significantly influence the immunological environment. Finally, qRT-PCR analysis revealed a significant upregulation of HSD17B1 mRNA expression level in the cancer cells compared to the human 293T cells, which was consistent with the bioinformatics data. There is a strong correlation between the elevated HSD17B1 expression and positive prognosis in patients with BLCA. Therefore, HSD17B1 can be used as a prognostic biomarker in these patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.