Abstract

Hydrogen molecules in ZnO are identified by their local vibrational modes. In a Raman study, interstitial H2, HD, and D2 species were found to exhibit local vibrational modes at frequencies 4145, 3628, and 2985 cm-1, respectively. After thermal treatment of vapor phase grown ZnO samples in hydrogen atmosphere, most hydrogen forms shallow donors at the bond-centered site (HBC). Subsequently, HBC migrates through the crystal and forms electrically inactive H2. These results imply that the "hidden" hydrogen in ZnO [G. A. Shi et al., Appl. Phys. Lett. 85, 5601 (2004)10.1063/1.1832736] occurs in the form of interstitial H2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.