Abstract

The purpose of this study is to describe the experiments of hydrogen generation from water molecules reacting with activated aluminum particles and the identification of its characteristics using an ARMA model on the assumption of the applications for a fuel-cell vehicle. Because 1 gram of the activated aluminum particles can generate about 1.1 liters of pure hydrogen, they have application possibility as the hydrogen resource of a fuel cell car. However, the details of hydrogen generation characteristics by this reaction are not well known. The reaction has non-linearity and time-varying due to the characteristics of the sample, the external environment and so on. Therefore, it is difficult to construct a mathematical model based on the physiochemical law of the reaction. Here, the dynamic characteristics of hydrogen generation are assumed to be described as a linear ARMA model using the reaction temperature and hydrogen generation. The parameters of ARMA model are identified by a constant trace adaptive algorithm using the measured data. The outputs of the ARMA model are well accorded with the measured data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.