Abstract

The sugar composition and content of fruit have a significant impact on their flavor and taste. In pitaya, or dragon fruit, sweetness is a crucial determinant of fruit taste and consumer preference. The sugars will eventually be exported transporters (SWEETs), a novel group of sugar transporters that have various physiological functions, including phloem loading, seed filling, nectar secretion, and fruit development. However, the role of SWEETs in sugar accumulation in pitaya fruit is not yet clear. Here, we identified 19 potential members (HuSWEET genes) of the SWEET family in pitaya and analyzed their conserved motifs, physiochemical characteristics, chromosomal distribution, gene structure, and phylogenetic relationship. Seven highly conserved α-helical transmembrane domains (7-TMs) were found, and the HuSWEET proteins can be divided into three clades based on the phylogenetic analysis. Interestingly, we found two HuSWEET genes, HuSWEET12a and HuSWEET13d, that showed strong preferential expressions in fruits and an upward trend during fruit maturation, suggesting they have key roles in sugar accumulation in pitaya. This can be further roughly demonstrated by the fact that transgenic tomato plants overexpressing HuSWEET12a/13d accumulated high levels of sugar in the mature fruit. Together, our result provides new insights into the regulation of sugar accumulation by SWEET family genes in pitaya fruit, which also set a crucial basis for the further functional study of the HuSWEETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call