Abstract

Glycyrrhetinic acid, the active metabolite of glycyrrhizin, is primarily eliminated by glucuronidation reaction in vivo. In spite of the widespread clinical use of glycyrrhizin, UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of this drug are still unknown. This report identifies and characterizes the UGT isoforms responsible for glycyrrhetinic acid glucuronidation. In the enzymatic kinetic experiment performed with pooled human liver microsomes (HLMs), K(m) was 39.4 microM and V(max) was 609.2 pmol/min/mg protein. Of the baculosomes expressing 12 recombinant UGTs investigated, UGT1A1, 1A3, 2B4 and 2B7 showed catalytic activity and UGT1A3 exhibited the highest activity. K(m) values of recombinant UGT1A3 and 2B7 were 3.4 and 4.4 microM, respectively. Both imipramine (typical substrate of UGT1A3 and 1A4) and flurbiprofen (typical substrate of UGT2B7) inhibit the glucuronidation of glycyrrhetinic acid. Estimated IC(50) values were 138 microM for flurbiprofen and 207 microM for imipramine in the inhibition of the glucuronidation of glycyrrhetinic acid in HLMs. These results suggest that glycyrrhetinic acid glucuronidation is primarily mediated by UGT1A1, 1A3, 2B4 and 2B7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.