Abstract

Rapid identification of human remains following mass casualty events is essential to bring closure to family members and friends of the victims. Unfortunately, disaster victim identification, missing persons identification, and forensic casework analysis are often complicated by sample degradation due to exposure to harsh environmental conditions. Following a mass disaster, forensic laboratories may be overwhelmed by the number of dissociated portions that require identification and reassociation or compromised by the event itself. The interval between the disaster and receipt of victim samples at a laboratory is critical in that sample quality deteriorates as the postmortem interval increases. When bodies decompose due to delay in collection, transport, and sample processing, DNA becomes progressively fragmented, adversely impacting identification. We have previously developed a fully automated, field-forward Rapid DNA identification system that produces STR profiles (also referred to as DNA IDs or DNA fingerprints) from buccal and crime scene samples. The system performs all sample processing and data interpretation in less than 2 h. Here, we present results on Rapid DNA identification performed on several tissue types (including buccal, muscle, liver, brain, tooth, and bone) from exposed human bodies placed above ground or stored in a morgue/cooler, two scenarios commonly encountered following mass disasters. We demonstrate that for exposed remains, buccal swabs are the sample of choice for up to 11 days exposure and bone and tooth samples generated excellent DNA IDs for the 1-year duration of the study. For refrigerated remains, all sample types generated excellent DNA IDs for the 3-month testing period.

Highlights

  • DNA genotyping in a conventional laboratory has become a standard tool for identification of victims from mass casualty events including the World Trade Center attack [1, 2], natural phenomena [3,4,5], plane crashes [6, 7], and terrorist-related atrocities [8]

  • We present results on Rapid DNA identification performed on several tissue types from exposed human donors placed above ground at the Anthropology Research Facility (ARF) and stored in the Forensic Anthropology Center (FAC) morgue cooler, two scenarios commonly encountered following mass disaster scenarios

  • No discrepancies in the DNA IDs were found between blood cards, buccal swabs, muscle, liver, brain, bone, and tooth, and the DNA IDs from Rapid DNA testing were concordant with results from conventional laboratory processing

Read more

Summary

Introduction

DNA genotyping in a conventional laboratory has become a standard tool for identification of victims from mass casualty events including the World Trade Center attack [1, 2], natural phenomena [3,4,5], plane crashes [6, 7], and terrorist-related atrocities [8]. Few jurisdictions in the USA have in-morgue DNA laboratories that are equipped for the high-throughput requirements of mass fatality events [13, 14]. In these cases, victim samples must be shipped to off-site forensic laboratories, further delaying analysis.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call