Abstract

Mannose binding lectin (MBL) binding initiates activation of the lectin complement pathway. Recent studies from our laboratory have demonstrated that MBL-dependent complement activation mediates cellular injury following oxidative stress in vivo and in vitro. A panel of novel inhibitory monoclonal antibodies (MAbs) against MBL (e.g., MAb 3F8, 2A9, and hMBL1.2) has been developed that inhibit MBL binding and lectin pathway activation. Here, we further characterized the interactions of these MAbs and their Fab fragments to MBL. Whole MAbs or their Fab fragments bound to MBL with relatively high affinity. Fab fragments of 3F8 were functionally effective in inhibiting MBL-dependent complement activation, however, steric hindrance of MAb 2A9 was essential for inhibition of MBL-dependent complement activation. We identified the hinge region, and residues EDCVLLL within the carbohydrate recognition domain of MBL as the recognition sites for MAb 3F8 and 2A9, respectively. The interaction of MAbs (e.g., 3F8 and 2A9) to MBL was dependent on the conformation of their recognition sites. These findings demonstrate that MBL binding can be inhibited by at least two separate and independent mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.