Abstract

I1 imidazoline receptors (I1R) were defined as receptors insensitive to catecholamines and highly sensitive to [3H]clonidine and analogs. By contrast, the I2R subtype is more sensitive to [3H]idazoxan. [3H]clonidine and [3H]idazoxan imidazoline specific binding sites (IBS) have been detected in crude human membranes. Pharmacologic characterization by binding assays clearly differentiates IBS from alpha 2-adrenoceptors, whereas differences between [3H]clonidine and [3H]idazoxan IBS are less clear in crude preparations. In fact, only moderate affinity for [3H]clonidine was detectable in such preparations. However, purification procedures allowed detection of high affinity [3H]clonidine IBS in the human brain, corresponding to the I1R. Difficulties in the characterization of the I1R in crude membranes are due to multiple factors including heterogeneity of IBS, their low Bmax value, the existence of allosteric modulation, and possibly the presence of natural binding inhibitors. Immunologic studies with specific anti-idiotypic antibodies revealed a 43-kD protein as the best candidate for I1R as binding activity coincides with immunodetection. No cross-reaction was found with anti-monoamine oxidase (MAO) A/B antibodies and the 43-kD protein, ruling out the possibility of this protein being an MAO-associated I2R. Neither anti-alpha 2A- nor anti-alpha 2B-specific antibodies were able to immunodetect the 43-kD protein in crude membrane preparations or in purified fractions. These results and further biochemical characterization (pHi, N-glycosylation) of the 43-kD protein definitely assessed that human brain I1R and alpha 2-adrenoceptors clearly differ physically. However, coexpression of I1R and alpha 2-adrenoceptors in synaptic plasma membranes of the bovine brainstem reinforce the possibility of a functional relationship between the two types of receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.