Abstract

Our bimanual operation experiments have shown that the movement of one hand affects that of the other at higher frequencies – a coupling that weakens for a skilled operator. To determine the bimanual operational properties, we designed a bimanual operation system with two XY-stages for studying Human Adaptive Mechatronics (HAM). Each XY-stage has two DC motors, a six-dimension force sensor, and two encoders. An operator moves the XY-stage through a grip on the force sensor. We first studied dynamic human properties, based on which we determined XY-stage specifications. The PID controller with a Virtual Internal Model (VIM) of the XY-stage, we designed enables XY-stages to follow the trajectory given by the operator, including locations and force commands. Using the XY-stages, we conducted bimanual operation experiments in which operators manipulate the XY-stages bimanually to track two orthogonal trajectories. To investigate bimanual operation properties, we analyzed variation, correlation, and the power spectrum density (PSD) of experimental input and output data and identified the transfer functions. This paper presents the design of the bimanual operation system and shows the experimental results and the analysis results of bimanual operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.