Abstract
The ability to monitor a pathogen's gene expression program in response to the host environment is central to understanding host-microbe interactions. This protocol describes the application of a fluorescence-based promoter trap strategy, termed differential fluorescence induction (DFI), to identify and characterize bacterial genes that are preferentially expressed in infected tissues. In this approach, animals are infected with a library of bacteria expressing random GFP transcriptional gene fusions, and fluorescent bacteria are recovered directly from host tissues using fluorescence-activated cell sorting (FACS). This methodology allows for the identification of bacterial promoters induced in distinct anatomical sites and at different stages of infection. Furthermore, unlike other methodologies, the use of the GFP reporter allows for single cell, temporal and spatial monitoring of pathogen gene expression in infected animals. Library construction, promoter identification and analysis can be done in 4-8 weeks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.