Abstract

Legionella pneumophila is a gram-negative bacterial pathogen that replicates in host macrophages and causes a severe pneumonia called Legionnaires' Disease. The innate immune response to L. pneumophila remains poorly understood. Here we focused on identifying host and bacterial factors involved in the production of type I interferons (IFN) in response to L. pneumophila. It was previously suggested that the delivery of L. pneumophila DNA to the host cell cytosol is the primary signal that induces the type I IFN response. However, our data are not easily reconciled with this model. We provide genetic evidence that two RNA-sensing proteins, RIG-I and MDA5, participate in the IFN response to L. pneumophila. Importantly, these sensors do not seem to be required for the IFN response to L. pneumophila DNA, whereas we found that RIG-I was required for the response to L. pneumophila RNA. Thus, we hypothesize that bacterial RNA, or perhaps an induced host RNA, is the primary stimulus inducing the IFN response to L. pneumophila. Our study also identified a secreted effector protein, SdhA, as a key suppressor of the IFN response to L. pneumophila. Although viral suppressors of cytosolic RNA-sensing pathways have been previously identified, analogous bacterial factors have not been described. Thus, our results provide new insights into the molecular mechanisms by which an intracellular bacterial pathogen activates and also represses innate immune responses.

Highlights

  • The intracellular bacterium Legionella pneumophila has become a valuable model for the study of immunosurveillance pathways

  • Macrophages were infected with L. pneumophila at a multiplicity of infection (MOI) of 1 and induction of interferon beta (Ifnb) message was analyzed by quantitative RT-PCR after 4 hours (Figure 1A–D)

  • Ips-12/2 and heterozygous littermate bone marrow derived macrophages were stimulated by transfection of 1.0 mg/ml pA:T and purified genomic L. pneumophila DNA

Read more

Summary

Introduction

The intracellular bacterium Legionella pneumophila has become a valuable model for the study of immunosurveillance pathways. L. pneumophila is believed to replicate in various species of freshwater amoebae. L. pneumophila causes disease by replicating within alveolar macrophages in the lung [2]. Replication in macrophages and amoebae requires a type IV secretion system that the bacterium uses to inject effector proteins into the host cell cytosol [3]. These effectors are believed to orchestrate the creation of an intracellular vacuole in which L. pneumophila can replicate. One L. pneumophila effector required for intracellular replication is SdhA [4], but the mechanism by which SdhA acts on host cells remains uncertain [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call