Abstract

Structural biology and structural genomics are expected to produce many three-dimensional protein structures in the near future. Each new structure raises questions about its function and evolution. Correct functional and evolutionary classification of a new structure is difficult for distantly related proteins and error-prone using simple statistical scores based on sequence or structure similarity. Here we present an accurate numerical method for the identification of evolutionary relationships (homology). The method is based on the principle that natural selection maintains structural and functional continuity within a diverging protein family. The problem of different rates of structural divergence between different families is solved by first using structural similarities to produce a global map of folds in protein space and then further subdividing fold neighborhoods into superfamilies based on functional similarities. In a validation test against a classification by human experts (SCOP), 77% of homologous pairs were identified with 92% reliability. The method is fully automated, allowing fast, self-consistent and complete classification of large numbers of protein structures. In particular, the discrimination between analogy and homology of close structural neighbors will lead to functional predictions while avoiding overprediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.