Abstract

The purpose of this study was to determine if sperm and oocyte proteins that mediate plasma membrane interaction during mammalian fertilization are conserved among porcine and bovine gametes. We examined homologous and heterologous sperm and zona-free oocyte interactions to determine the extent of cross-reactivity between the gametes of these two ungulate species. First, the numbers of ejaculated porcine and bovine sperm bound to the oocyte plasma membrane of intact porcine and bovine oocytes were determined in vitro. There was no significant difference between the number of porcine or bovine sperm that bound to porcine or bovine oocytes (P > 0.25). Second, individual porcine and bovine sperm plasma membrane proteins were identified by binding of homologous or heterologous oocyte plasma membrane to whole sperm plasma membrane on Western ligand blots. The relative amount of labeled oocyte plasma membrane bound to individual sperm plasma membrane proteins was analyzed by laser densitometry. Eight porcine sperm plasma membrane proteins and seven bovine sperm plasma membrane proteins were bound by both porcine and bovine oocyte plasma membrane. A significantly greater relative amount of porcine oocyte plasma membrane than bovine oocyte plasma membrane was bound to the 14- and 10-kD porcine sperm plasma membrane proteins (P < 0.001 and P < 0.01, respectively). A 27-kD bovine sperm plasma membrane protein bound proportionally more bovine oocyte plasma membrane probe than porcine oocyte plasma membrane probe (P < 0.04). These results are consistent with conservation of similar receptor ligand interactions at the gamete plasma membrane among porcine and bovine gametes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.