Abstract

In this paper, the self-organizing map (SOM) is applied to identify the homogeneous regions for regional frequency analysis. First, the algorithm and structure of the SOM are presented. Then the experimental design is applied to test the cluster accuracy of the SOM, the K-means method and Ward's method. These three clustering methods are tested on experimental data sets where the amount of cluster dispersion and the cluster membership are controlled and known. Among the three clustering methods, the results show that the SOM determines the cluster membership more accurately than the K-means method and Ward's method. Finally, the SOM is applied to actual rainfall data in Taiwan to identify homogeneous regions for regional frequency analysis. A two-dimensional map indicates that the rain gauges can be grouped into eight clusters. A heterogeneity test indicates that the eight regions are sufficiently homogeneous. Moreover, the results show that the SOM can identify the homogeneous regions more accurately as compared to the other two clustering methods. Because of unsupervised learning, the SOM does not require the knowledge of corresponding output for comparison purposes. In addition, the SOM is more robust than the traditional clustering methods. Therefore, the SOM is recommended as an alternative to the identification of homogeneous regions for regional frequency analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.