Abstract

ObjectionThe aim of this study is to develop an early-warning model for identifying high-risk populations of pneumoconiosis by combining lung 3D images and radiomics lung texture features. MethodsA retrospective study was conducted, including 600 dust-exposed workers and 300 confirmed pneumoconiosis patients. Chest computed tomography (CT) images were divided into a training set and a test set in a 2:1 ratio. Whole-lung segmentation was performed using deep learning models for feature extraction of radiomics. Two feature selection algorithms and five classification models were used. The optimal model was selected using a 10-fold cross-validation strategy, and the calibration curve and decision curve were evaluated. To verify the applicability of the model, the diagnostic efficiency and accuracy between the model and human interpretation were compared. Additionally, the risk probabilities for different risk groups defined by the model were compared at different time intervals. ResultsFour radiomics features were ultimately used to construct the predictive model. The logistic regression model was the most stable in both the training set and testing set, with an area under curve (AUC) of 0.964 (95 % confidence interval [CI], 0.950–0.976) and 0.947 (95 %CI, 0.925–0.964). In the training and testing sets, the Brier scores were 0.092 and 0.14, respectively, with threshold probability ranges of 2 %-99 % and 2 %-85 %. These results indicate that the model exhibits good calibration and clinical benefit. The comparison between the model and human interpretation showed that the model was not inferior in terms of diagnostic efficiency and accuracy. Additionally, the high-risk population identified by the model was diagnosed as pneumoconiosis two years later. ConclusionThis study provides a meticulous and quantifiable method for detecting and assessing the risk of pneumoconiosis, building upon accurate diagnosis. Employing risk scoring and probability estimation, not only enhances the efficiency of diagnostic physicians but also provides a valuable reference for controlling the occurrence of pneumoconiosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.