Abstract
Heterotopic mineralization in equine distal limbs has been considered an incidental finding and little is known about its imaging features. The study aimed to identify heterotopic mineralization and adjacent pathology in the fetlock region with cone-beam (CB) computed tomography (CT), fan-beam (FB) CT, and low-field magnetic resonance imaging (MRI). Images from 12 equine cadaver limbs were examined for heterotopic mineralization and adjacent pathology and verified by macro-examination. Retrospective review of the CBCT/MR images from 2 standing horses was also included. CBCT and FBCT identified twelve mineralization's with homogeneous hyperattenuation: oblique-sesamoidean-ligament (5) without macroscopic abnormality; deep-digital-flexor-tendon (1) and suspensory-branch (6) with macroscopic abnormalities. MRI failed to identify all mineralization's, but detected suspensory branch splitting, and T2 and STIR hyperintensity in 4 suspensory-branches and 3 oblique-sesamoidean-ligaments. Macro-examination found corresponding disruption/splitting and discoloration. All modalities identified 7 ossified fragments showing cortical/trabecular pattern: capsular (1), palmar sagittal ridge (1), proximal phalanx (2) without macroscopic abnormality, and proximal sesamoid bones (3). On MRI, fragments were most identifiable on T1 images. All abaxial avulsions had suspensory-branch splitting on T1 images with T2 and STIR hyperintensity. Macro-examination showed ligament disruption/splitting and discoloration. Suspensory-branch/intersesamoidean ligament mineralization's were identified by CBCT in standing cases; 1 had associated T2 hyperintensity. Both CT systems were generally superior in identifying heterotopic mineralization's than MRI, while MRI provided information on soft tissue pathology related to the lesions, which may be important for management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.