Abstract

The frequency and fine specificity of herpes simplex virus (HSV)-reactive cytotoxic T lymphocytes (CTL) of C57BL/6 mice was investigated in limiting dilution culture. The reactivity patterns of virus-specific CTL were assayed on target cells infected with HSV type 1, strain KOS, HSV type 2, strain Mueller, and mutants of HSV-1 (KOS) antigenically deficient or altered in glycoproteins gC or gB, two of the four major HSV-1-encoded cell surface glycoprotein antigens. Most CTL clones recognized type-specific determinants on target cells infected with the immunizing HSV serotype. In addition, the majority of HSV-1-specific CTL did not cross-react with cells infected with syn LD70, a mutant of HSV-1 (KOS) deficient for the presentation of cell surface glycoprotein gC. These data are the first demonstration of the clonal specificity of HSV-1-reactive CTL, and they identify gC as the immunodominant antigen. The fine specificity of gC-specific CTL clones was analyzed on target cells infected with mutant viruses altered in the antigenic structure of gC. These mutants were selected by resistance to neutralization with monoclonal antibodies, referred to as monoclonal antibody-resistant (mar) mutants. Most mar mutations in gC did not affect recognition by the majority of CTL clones. This indicated that most epitopes recognized by CTL are distinct from those defined by antibodies. The finding, however, that one mar mutation in gC affected both CTL and antibody recognition of this antigen may help to define antigenic sites important to both humoral and cell-mediated immunity to herpesvirus infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call