Abstract

With the recent synthesis of superheavy nuclides produced in the reactions 48Ca+238U and 48Ca+242,244Pu, much longer-lived nuclei than the previously known neutron-deficient isotopes of the heaviest elements have been identified. Half-lives of several hours and up to several years have been predicted for the longest-lived isotopes of these elements. Thus, the sensitivity of radiochemical separation techniques may present a viable alternative to physical separator systems for the discovery of some of the predicted longer-lived heavy and superheavy nuclides. The advantages of chemical separator systems in comparison to kinematic separators lie in the possibility of using thick targets, high beam intensities spread over larger target areas and in providing access to nuclides emitted under large angles and low velocities. Thus, chemical separator systems are ideally suited to study also transfer and (HI, αxn) reaction products. In the following, a study of (HI, αxn) reactions will be presented and prospects to chemically identify heavy and superheavy elements discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.