Abstract
This paper investigates the use of particle swarm optimization (PSO) in the identification of Hammerstein models with known nonlinearity structure. The parameters of the Hammerstein model are estimated using PSO from the input–output data by minimizing the error between the true model output and the identified model output. Using PSO, Hammerstein models with known nonlinearity structure and unknown parameters can be identified. Moreover, systems with non-minimum phase characteristics can be identified. Extensive simulations have been used to study the convergence properties of the proposed scheme. Simulation examples are included to demonstrate the effectiveness and robustness of the proposed identification scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.