Abstract
Cancer development remains the most challenging obstacle in colorectal cancer (CRC) treatment. The current study aims to identify and demonstrate novel oncogenes for CRC. The CRC data of the Cancer Genome Atlas database and the Gene Expression Omnibus database were subjected to bioinformatics analysis to identify the novel potential diagnostic and prognostic biomarkers for CRC. Immunohistochemical assay, western blot, and quantitative PCR (qPCR) were used to analyze hydroxyacylglutathione hydrolase-like (HAGHL) gene expression in CRC tissues and cultured CRC cells. D-Lactate colorimetric assay was applied to determine concentration of D-lactate in supernatants from CRC tissues and cell culture medium. Cell counting kit-8 (CCK-8) assay, flow cytometry, tumor xenografts experiment, and TUNEL staining analysis were performed to evaluate the function of HAGHL in CRC. We comprehensively analyzed the CRC data of the Cancer Genome Atlas database and the Gene Expression Omnibus database, and identified several novel potential diagnostic and prognostic biomarkers for CRC, including HAGHL, DNTTIP1, DHX34, and AP1S3. The expression of HAGHL, the strongest oncogenic activity gene, is positively related to D-lactate levels in CRC tissues and negatively associated with patient prognosis. HAGHL downregulation suppressed the production of D-lactate and induced apoptosis, resulting in inhibition of cell proliferation in vitro. In vivo experiment showed that knockdown of HAGHL induced cell apoptosis and inhibited tumor growth. These findings suggest that HAGHL acts as a novel metabolic oncogene and demonstrate the underlying mechanism by which HAGHL regulates CRC progression, highlighting its utility as a diagnostic and prognostic factor and as a potential therapeutic target for the treatment of CRC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.