Abstract

Haemophilus parasuis is the etiological agent of Glässer’s disease which is characterized by fibrinous polyserositis, arthritis and meningitis. The pathogenesis of this bacterium remains largely unknown. Genes expressed in vivo may play an important role in the pathogenicity of H. parasuis. The development of in vivo-induced antigen technology (IVIAT) has provided a valuable tool for the identification of in vivo-induced genes during bacterial infection. In this study, IVIAT was applied to identify in vivo-induced antigens of H. parasuis. Pooled swine H. parasuis-positive sera, adsorbed against in vitro-grown cultures of H. parasuis SH0165 and Escherichia coli BL21 (DE3), were used to screen the inducible expression library of genomic proteins from whole genome sequenced H. parsuis SH0165. Finally, 24 unique genes expressed in vivo were successfully identified after secondary and tertiary screening with IVIAT. These genes were implicated in cell surface proteins, metabolism, stress response, regulation, transportation and other processes. Quantitative real-time PCR showed that the mRNA levels of 24 genes were all upregulated in vivo relative to in vitro, with 13 genes were detected significantly upregulated in H. parasuis infected pigs. Several potential virulence-associated genes were found to be uniquely expressed in vivo, including espP, lnt, hutZ, mreC, vtaA, pilB, tex, sunT and aidA. The results indicated that the proteins identified using IVIAT may play important roles in the pathogenesis of H. parasuis infection in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call