Abstract

AbstractAn arsenic–selenium metabolite that exhibited the same arsenic and selenium X‐ray absorption near‐edge spectra as the synthetic seleno‐bis(S‐glutathionyl) arsinium ion [(GS)2AsSe]− was recently detected in rabbit bile within 25 min after intravenous injection of rabbits with sodium selenite and sodium arsenite. X‐ray absorption spectroscopy did not (and cannot) conclusively identify the sulfur‐donor in the in vivo sample. After similar treatment of rabbits, we analyzed the collected bile samples by size‐exclusion chromatography (SEC) using inductively coupled plasma atomic emission spectroscopy (ICP‐AES) to monitor arsenic, selenium and sulfur simultaneously. The bulk of arsenic and selenium eluted in a single peak, the intensity of which was greatly increased upon spiking of the bile samples with synthethic [(GS)2AsSe]−. Hence, we identify [(GS)2AsSe]− as the major metabolite in bile after exposure of rabbits to selenite and arsenite. The reported SEC–ICP‐AES method is the first chromatographic procedure to identify this biochemically important metabolite in biological fluids and is thus a true alternative to X‐ray absorption spectroscopy, which is not available to many chemists. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call