Abstract

Recent studies have demonstrated that cancer-specific metabolism plays a crucial role in a variety of malignancies, including acute myeloid leukemia (AML). To identify a novel therapeutic target for AML, we conducted a metabolite screen on AML cells and normal hematopoietic stem/progenitor cells (HSPCs) and detected that the metabolism of glycerol-3-phosphate (G3P) is reprogrammed in AML. Glycerol-3-phosphate acyltransferases (GPATs), the first and rate-limiting enzymes in the lipid biosynthesis pathway, convert G3P into lysophosphatidic acid (LPA). Among various GPAT isozymes, GPAT1 was highly expressed in AML cells and silencing it inhibited the cell growth of AML. GPAT1 is located on the outer membrane of the mitochondria and regulates mitochondrial fusion and oxidative phosphorylation (OXPHOS). Silencing GPAT1 promoted mitochondrial fission and reduced OXPHOS. In AML, the GPAT1 inhibitor also suppressed cell proliferation and mitochondrial metabolism. However, this inhibitor had no effect on normal hematopoiesis in vivo. In conclusion, these findings indicate that targeting GPAT1 may be a promising therapeutic strategy for AML, since it suppresses leukemia-specific metabolism without impairing normal HSPCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.