Abstract

Because gastric infection by Helicobacter pylori takes place via the oral route, possible interactions of this bacterium with human salivary proteins could occur. By using modified 1- and 2-D bacterial overlay, binding of H. pylori adhesins BabA and SabA to the whole range of salivary proteins was explored. Bound salivary receptor molecules were identified by MALDI-MS and by comparison to previously established proteome maps of whole and glandular salivas. By use of adhesin-deficient mutants, binding of H. pylori to MUC7 and gp-340 could be linked to the SabA and BabA adhesins, respectively, whereas binding to MUC5B was associated with both adhesins. Binding of H. pylori to the proline-rich glycoprotein was newly detected and assigned to BabA adhesin whereas the SabA adhesin was found to mediate binding to newly detected receptor molecules, including carbonic anhydrase VI, secretory component, heavy chain of secretory IgA1, parotid secretory protein and zinc-alpha(2)-glycoprotein. Some of these salivary glycoproteins are known to act as scavenger molecules or are involved in innate immunity whereas others might come to modify the pathogenetic properties of this organism. In general, this 2-D bacterial overlay technique represents a useful supplement in adhesion studies of bacteria with complex protein mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.