Abstract

BackgroundThe post-translational protein modification via lysine residues can significantly alter its function. α2-antiplasmin, a key inhibitor of fibrinolysis, contains 19 lysine residues. AimWe sought to identify sites of glycation and acetylation in human α2-antiplasmin and test whether the competition might occur on the lysine residues of α2-antiplasmin. MethodsWe analyzed human α2-antiplasmin (1) untreated; (2) incubated with increasing concentrations of β-d-glucose (0, 5, 10, 50 mM); (3) incubated with 1.6 mM acetylsalicylic acid (ASA) and (4) incubated with 1.6 mM ASA and 50 mM β-d-glucose, using the ultraperformance liquid chromatography system coupled to mass spectrometer. ResultsEleven glycation sites and 10 acetylation sites were found in α2-antiplasmin. Incubation with β-d-glucose was associated with glycation of 4 (K-418, K-427, K-434, K-441) out of 6 lysine residues, known to be important for mediating the interaction with plasmin. Glycation and acetylation overlapped at 9 sites in samples incubated with β-d-glucose or ASA. Incubation with concomitant ASA and β-d-glucose was associated with the decreased acetylation at all sites overlapping with glycation sites. At K-182 and K-448, decreased acetylation was associated with increased glycation when compared with α2-antiplasmin incubated with 50 mM β-d-glucose alone. Although K-24 located in the proximity of the α2-antiplasmin cleavage site, was found to be only acetylated, incubation with ASA and 50 mM β-d-glucose was associated the absence of acetylation at that site. ConclusionHuman α2-antiplasmin is glycated and acetylated at several sites, with the possible competition between acetylation and glycation at K-182 and K-448. Our finding suggests possibly relevant alterations to α2-antiplasmin function at high glycemia and during aspirin use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.