Abstract

Summary This paper discusses a method which helps identify the geometry of geological features in an oil reservoir by history matching of production data. Following an initial study on single-phase flow and applied to well tests (Rahon, D., Edoa, P. F., and Masmoudi, M.: "Inversion of Geological Shapes in Reservoir Engineering Using Well Tests and History Matching of Production Data," paper SPE 38656 presented at the 1997 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 5-8 October.), the research presented here was conducted in a multiphase flow context. This method provides information on the limits of a reservoir being explored, the position and size of faults, and the thickness and dimensions of channels. The approach consists in matching numerical flow simulation results with production measurements. This is achieved by modifying the geometry of the geological model. The identification of geometric parameters is based on the solution of an inverse problem and boils down to minimizing an objective function integrating the production data. The minimization algorithm is rendered very efficient by calculating the gradients of the objective function with respect to perturbations of these geometric parameters. This leads to a better characterization of the shape, the dimension, and the position of sedimentary bodies. Several examples are presented in this paper, in particular, an application of the method in a two-phase water/oil case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call