Abstract
Wolfiporia cocos, as a kind of medicine food homologous fungus, is well-known and widely used in the world. Therefore, quality and safety have received worldwide attention, and there is a trend to identify the geographic origin of herbs with artificial intelligence technology. This research aimed to identify the geographical traceability for different parts of W. cocos. The exploratory analysis is executed by two multivariate statistical analysis methods. The two-dimensional correlation spectroscopy (2DCOS) images combined with residual convolutional neural network (ResNet) and partial least square discriminant analysis (PLS-DA) models were established to identify the different parts and regions of W. cocos. We compared and analysed 2DCOS images with different fingerprint bands including full band, 8900-6850 cm-1 , 6300-5150 cm-1 and 4450-4050 cm-1 of original spectra and the second-order derivative (SD) spectra preprocessed. From all results: the exploratory analysis results showed that t-distributed stochastic neighbour embedding was better than principal component analysis. The synchronous SD 2DCOS is more suitable for the identification and analysis of complex mixed systems for the small-band for Poria and Poriae cutis. Both models of PLS-DA and ResNet could successfully identify the geographical traceability of different parts based on different bands. The 10% external verification set of the ResNet model based on synchronous 2DCOS can be accurately identified. Therefore, the methods could be applied for the identification of geographical origins of this fungus, which may provide technical support for quality evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.